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Abstract

In 1972 A. H. Vincent, the then Chief Dynamicist at Westland Helicopters, discovered that when a structure excited at

point p with a constant frequency is modified, for example by the addition of a spring between two points r and s, then the

response at another point q traces a circle when plotted in the complex plane as the spring stiffness is varied from minus

infinity to plus infinity. This discovery, although apparently little known today, has many useful applications some of

which are described in papers by various authors appearing in the 1970s and early 1980s. Vincent’s discovery is in fact a

particular example of the bilinear transformation due to August Ferdinand Moebius (1790–1868). In this paper, the

Vincent circle method is generalized for the case of any straight-line modification in the complex plane, typically

z ¼ k þ ioc2o2m, where c ¼ aðk � o2mÞ þ b. A new method for the visualization of Vincent circle results, including the

case of multiple modifications is also presented.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Predicting the effect of a local modification, such as an added stiffness, mass or viscous damper, on the
vibration characteristics of an elasto-mechanical system is a frequently encountered problem. Vincent [1]
observed that when a structure excited at a point q with a constant frequency was modified, for example by the
addition of a spring between two coordinates r and s, then the response at another point p traced out a circle
when plotted in the complex plane as the spring stiffness was varied between minus and plus infinity. Vincent’s
circle is in fact a particular manifestation of the Moebius’ transformation [2], which maps straight lines and
circles in one complex domain onto straight lines and circles in another. In the structural modification
problem, the modification itself can the expressed as a complex dynamic stiffness, typically of the form
krs þ iocrs, between r and s. Apparently Vincent, and other authors [3–5] writing at the same time, were
unaware of the Moebius transformation because they restricted their attention to only one straight line—the
stiffness modification line—along the real axis of the complex modification plane. When a viscous damping
coefficient is varied between plus and minus infinity along the imaginary axis, a Vincent circle will also be
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

C viscous damping matrix
H(o) receptance matrix
HðoÞ modified receptance matrix
ep; eq; er; es unit vectors formed from the pth, qth,

rth and sth column of the identity
matrix, respectively

K stiffness matrix
M mass matrix
a, b, c, d Vincent circle parameters
c, k,m modification parameters
C0;C1;C2 circle names
hpqðoÞ pqth term of the receptance matrix

h̄pqðoÞ pqth term of the modified receptance
matrix

p, q, r, s coordinates
zrsðoÞ dynamic stiffness of modification be-

tween two coordinates r and s

z1; z2 variable parameters
Dk�;Dm�;Dz� modification parameters
Dz1;Dz2 increment of z1 and z2
a;b coefficients of the straight line
a;b; g; d Moebius transformation coefficients
x centre of Vincent’s circle
r radius of Vincent’s circle
o radian frequency

M.G. Tehrani et al. / Journal of Sound and Vibration 292 (2006) 661–675662
traced in the plane of a complex receptance, as will a general straight-line modification of the form
crs ¼ akrs þ b, �14krs41.

The assignment of natural frequencies and antiresonances [6] is an important aspect of vibration
suppression and the closest point on the Vincent circle to the origin of the complex receptance plane defines
the parameter that reduces the vibration response to a minimum at the chosen frequency. A closed-form
solution of the vibration reduction problem using Vincent’s circle was presented by Mottershead and Ram [7].
In this paper, the theory of Vincent’s circle is described and a new technique for the visualization of results
explained. Numerical and experimental example problems are discussed.

2. Theory

In the general case of a modification zrsðoÞ ¼ krs þ ocrs connected between the rth and sth coordinates the
matrix of receptances may be expressed as

HðoÞ ¼ Kþ oC� o2Mþ zrsðoÞðer � esÞðer � esÞ
T

� ��1
, (1)

where the overbar denotes the modified system. er is the unit vector formed from the rth column of the identity
matrix. A list of symbols is given in Nomenclature.

Application of the Sherman–Morrison formula [8] leads to an expression for the modified-system
receptances in terms of the receptances of the original system

HðoÞ ¼ HðoÞ �
zrsðoÞHðoÞðer � esÞðer � esÞ

THðoÞ

1þ zrsðoÞðer � esÞ
THðoÞðer � esÞ

. (2)

The pqth term can then be selected from the matrix of modified receptances by

hpq ¼ eTp ĤðoÞeq, (3)

which may be written explicitly in the form

h̄pqðoÞ ¼ hpqðoÞ �
zrsðoÞðhprðoÞ � hpsðoÞÞðhrqðoÞ � hsqðoÞÞ

1þ zrsðoÞðhrrðoÞ � hrsðoÞ � hsrðoÞ þ hssðoÞÞ
, (4)

where hpq oð Þ; hpr oð Þ; hps oð Þ; hrq oð Þ; hsq oð Þ; hrr oð Þ; hrs oð Þ; hsr oð Þ; hss oð Þ are receptances of the original
system and h̄pqðoÞ is the desired receptance of the modified system.
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Eq. (4) represents the most general case but may be straightforwardly simplified for the cases of (i) a point
receptance ðp ¼ qÞ

h̄qqðoÞ ¼ hqqðoÞ �
zrsðoÞðhqrðoÞ � hqsðoÞÞ

2

1þ zrsðoÞðhrrðoÞ � hrsðoÞ � hsrðoÞ þ hssðoÞÞ
. (5)

(ii) Co-incidence of a receptance and a modification coordinate ðp ¼ rÞ

h̄rqðoÞ ¼ hrqðoÞ �
zrsðoÞ hrrðoÞ � hrsðoÞÞðhrqðoÞ � hsqðoÞ

� �
1þ zrsðoÞ hrrðoÞ � hrsðoÞ � hsrðoÞ þ hssðoÞð Þ

(6)

and (iii) point modifications zrsðoÞ ¼ zrrðoÞ; hpsðoÞ ¼ hsqðoÞ ¼ hrsðoÞ ¼ hsrðoÞ ¼ hssðoÞ ¼ 0
� �

, which might
include a point mass, so that zrrðoÞ ¼ krr þ iocrr � o2mrr,

h̄pqðoÞ ¼
hpqðoÞ þ zrrðoÞ hpqðoÞhrrðoÞ � hprðoÞhrqðoÞ

� �
1þ zrrðoÞhrrðoÞ

. (7)

2.1. Vincent’s circle—the case of a general straight-line modification

Vincent’s circle is best explained when Eq. (4) is written in the simplified form [7]

a ¼ bþ
zc

1þ zd
; a ¼ h̄pqðoÞ; a; b; c; d 2 C, (8)

where C denotes the set of complex numbers.
The more general Moebius transformation [2], which provides a one-to-one conformal mapping of the z-

plane to the Z-plane, is generally written as

Z ¼
azþ b
gzþ d

; ad� bga0, (9)

where in this particular case

Z ¼ a; a ¼ bd þ c; b ¼ b; d ¼ 1; g ¼ d. (10)

The Moebius transformation is sometimes called the bilinear transformation because it is derived from the
bilinear relation between two variables z and Z

gzZ þ dZ � az� b ¼ 0. (11)

The property which explains why the response Z can be represented as a circle at a fixed frequency as a
function of the structural modification z 2 C, is that every Mobius transformation (8), (9) maps circles into
circles, real circles (including straight lines) into real circles or straight lines and imaginary circles into
imaginary circles. Details can be found in Chapter 6 of Ref. [2].

Done and Hughes [3] showed that the imaginary part of z is zero if and only if a is on the perimeter of a
circle, the radius and centre of which may be expressed as

r ¼
c

2 imagðdÞ

����
����; x ¼ b�

icr
cj j

(12), (13)

which is of course the case of a strictly real modification ðz ¼ k � o2mÞ.
Similar analysis in the case of a purely imaginary modification [8], the Vincent circle of a viscous damper,

shows that

r ¼
c

2 realðdÞ

����
����; x ¼ bþ

cr
cj j
. (14), (15)

And for a complex modification, z ¼ k þ ioc� o2m, of the form c ¼ aðk � o2mÞ þ b

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bocc�

A
þ BB�

r�����
�����; x ¼ bþ B, (16), (17)
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A ¼ imag dð Þ þ ao real dð Þ � bodd�; B ¼
o a� 2bd�ð Þ � ið Þc

2A
, (18), (19)

where ( � )* denotes the complex conjugate. The derivation of Eqs. (16) and (17) is given in Appendix A.
The point on the circle closest to the origin of the complex plane corresponds to the greatest possible

suppression of vibration as shown in Fig. 1. The strictly real modification k resulting in the minimum of aj j

was determined in closed form by Mottershead and Ram [7]. Similar closed-form solutions are of course
available for the purely imaginary modification and general straight-line modification c ¼ aðk � o2mÞ þ b.

2.2. Visualization of Vincent circle results

Consider an arbitrary multi-degree-of-freedom system. In order to study the effect of a structural
modification over a range of frequencies the modified receptance a represented by distinct circles at each
frequency increment, when z 2 C, may be laid on top of each other to form a 3D surface where the vertical
axis represents frequency and the circles are in the horizontal plane, as shown in Fig. 2. The surface represents
an envelope of the Vincent circles and the 3D curve revolving around the surface represents the receptances at
all frequencies when the modification is zero. The projection of this curve on the zero frequency plane
represents the polar diagram of the system. The 3D plot was described previously [3] and is only included so
that the account presented here is complete.
Fig. 1. Vincent’s circle.

Fig. 2. Response as a function of stiffness and frequency variation for a multi-degree-of-freedom system.
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The response obtained when varying two parameters independently can be visualized by superimposing
multiple Vincent circles. By covering all possible combinations of values for the two parameters, a feasible
response region in the complex plane is formed, inside which the response must lie.

The boundary of the feasible response region is obtained when the Jacobian of the transformation
aðz1; z2Þ ¼ arðz1; z2Þ þ iaiðz1; z2Þ becomes zero [3]:

qar=qz1 qar=qz2

qai=qz1 qai=qz2

�����
����� ¼ 0 (20)

or, alternatively,

Im
qa

qz1

qa�

qz2

� �
¼ 0, (21)

when the two parameters z1; z2 are varied. The theoretical solution leads to a complicated formulation and
consequently a numerical method is developed to obtain the boundary while avoiding the need for symbolic
calculations.

Considering the response aðz1; z2Þ and developing the perturbed response aðz1 þ Dz1; z2 þ Dz2Þ as a first-
order Taylor expansion

aðz1 þ Dz1; z2 þ Dz2Þ ¼ aðz1; z2Þ þ Dz1
qa

qz1
þ Dz2

qa

qz2

¼ aðz1; z2Þ þ
qa

qz1

qa

qz2

� � Dz1

Dz2

( )

¼ aðz1; z2Þ þ
qar

qz1
þ i

qai

qz1

qar

qz2
þ i

qai

qz2

� � Dz1

Dz2

( )

¼ aðz1; z2Þ þ 1 i
	 
 qar

qz1

qar

qz2

qai

qz1

qai

qz2

2
6664

3
7775

Dz1

Dz2

( )
ð22Þ

which includes the Jacobian explicitly.
At a point of intersection aðz1; z2Þ ¼ aðz1 þ Dz1; z2 þ Dz2Þ it is seen that the matrix

qar

qz1

qar

qz2
qai

qz1

qai

qz2

2
6664

3
7775

becomes singular for a particular increment in the modification, Dz1
Dz2

n o
a0. Thus, the locus of intersections at

discrete intervals of the modification Dz1;Dz2 represents a close approximation to the boundary of the feasible
region. In Fig. 3, C0 is the Vincent circle given when z1 2 C and z2 ¼ 0, and C1 and C2 are the two circles
obtained when z2 2 C and z1 takes fixed values separated by the small perturbation Dz1. The intersection
points between C1 and C2 determine the boundary of feasible modifications. In the particular case of Fig. 3
one of the intersections is very close to circle C0. This is because the increment Dz1 separates two extremely
close points on C0. The intersection does not lie on C0.

3. Numerical example

The example considered is the four-degree-of-freedom system, first described by Done and Hughes [2],
shown in Fig. 4 with undamped natural frequencies of 1.05, 1.63, 2.48 and 4.99 rad/s. It can be observed that
the oscillator m4, k5, c3 acts as a damped vibration absorber on the rest of the system. We consider a series of
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Fig. 4. Done and Hughes system: k1 ¼ 40, k2 ¼ k3 ¼ k4 ¼ 30, m1 ¼ 3, m2 ¼ 10, m3 ¼ 20, m4 ¼ 5, c1 ¼ 0:5, c2 ¼ 0:6, c3 ¼ 0:8.

Fig. 3. Circle intersections defining the boundary of the feasible region.
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applications to demonstrate how the Vincent circle method can be used in the analysis of vibration
suppression problems.

3.1. The Vincent circle obtained by varying the stiffness of a spring

As a completely arbitrary first example we consider a modification by an added spring, Dk�, connecting
mass m2 to ground and its affect upon the receptance h33. When the modification takes values between
�1oDk�o1 the circle representing the displacement response of the system at coordinate 3 to sinusoidal
excitation at the same coordinate may be traced out as shown in Fig. 5. The centre of the circle is marked with
‘n’, the point Dk� ¼ 0 with a small circle and the closest point to the origin with a black dot. The range
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Fig. 5. The Vincent circle for receptance h33 with stiffness modification Dk1.

Fig. 6. Modified (full) and original receptances (dashed): (a) closest point on the circle and (b) exact assignment of the antiresonance.
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0oDk�o1 is plotted as a full line and �1oDk�o0 as a dashed line. The example shown in the figure is for
the excitation frequency of 2.4 rad/s. In vibration suppression problems the problem might be interpreted as
finding the value of Dk� corresponding to the point on the circle closest to the origin of the complex plane. A
closed-form solution is described by Mottershead and Ram [7]. In the example the value of the modification at
the closest point is Dk� ¼ 14:78 and the modification required to assign a antiresonance at exactly 2.4 rad/s is
found [7] to be Dz� ¼ 14:67� 1:66i, so that in the latter case modifications to both stiffness and damping are
necessary. Fig. 6 shows the original and modified receptances for the two cases (a) the closest strictly real
modification Dk� ¼ 14:78 and (b) the exact assignment of the antiresonance Dz� ¼ 14:67� 1:66i.

Next consider modification of the fifth spring. Fig. 7 shows two Vincent circles produced when o ¼
1:5 rad=s corresponding to c3 ¼ 0:8 and 0. The smaller of the two circles is the damped one and it can be
observed immediately that the larger circle passes exactly through zero when k5 þ Dk5 ¼ o2m4 ¼ 11:25,
which is as expected the exact assignment of an antiresonance for the undamped absorber. The point on the
damped-absorber circle closest to the origin is at Dk5 ¼ 1:61.
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Fig. 7. Vincent circle for receptance h33 with stiffness modification Dk5.

Fig. 8. Vincent circle with damping modification Dc3.
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3.2. The Vincent circle obtained by varying a damping coefficient

Fig. 8 shows the Vincent circle of parameter Dc3 superimposed on part of the larger Vincent circle in Fig. 7.
The large Vincent circle is for �1oDk5o0 while k5 ¼ 10 and c3 ¼ 0 and the other, smaller, Vincent circle is
for �1oDc3o0 while k5 ¼ 11:25 and c3 ¼ 0. This value of k5 is the one that exactly assigns an antiresonance
when c3 ¼ 0 and therefore the small circle at the intersection, when c3 ¼ 0, is also at the origin of the complex
plane of the receptance h33. The small ‘+’ sign denotes c3 ¼ 1:6, twice the value used by Done and Hughes [3].
It is clear that the distance of the ‘+’ from the origin remains small, but the bandwidth of the antiresonance is
considerably improved as shown in Fig. 9. Apparently the first mode is not affected very much by the absorber
damper but the second node is very considerably diminished. If the mass m4 is increased then the first mode is
moved to the left, which may further increase the bandwidth. In the case of m4 ¼ 20 it is necessary to make a
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Fig. 9. Receptance h33 when c3 ¼ 1:6.

Fig. 10. Vincent circle h33 for c3 ¼ ak5 þ b.
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stiffness modification k5 ¼ 35 in order to maintain the antiresonance at 1.5 rad/s, but a considerable further
increase in bandwidth is achieved.

3.3. Vincent circle obtained by varying stiffness and damping together ðc3 ¼ ak5 þ bÞ

The most general case of a stiffness and damping modification in the form c3 ¼ ak5 þ b is now considered.
In our case we consider a ¼ 0:01, b ¼ 0:1. The closest point to the origin is found to be at k5 ¼ 1:69 as shown
in Fig. 10.

3.4. Multiple circles obtained by varying two parameters independently

The Vincent circle method is readily extended to the case of two independently varied parameters. The
circles of the second parameter are then superimposed on the single circle of the first parameter, each
second–parameter circle corresponding to a constant value of the first parameter. In Fig. 11 the two
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Fig. 11. Vincent circles h33 when �1ok3o1, �1ok5o1.

Fig. 12. Boundary of the superimposed Vincent circles.
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parameters are k3 and k5. The circles of the second parameter, k5, are each plotted for a constant value k3

incremented between �1 and þ1. Then at each constant value of k3 a circle is traced when �1ok5o1.
The boundary of the region encompassed by the circles is shown in Fig. 12 together with the vector to the
closest point, which corresponds in this case to k3 ¼ �23:23, k5 ¼ �2:4.
4. Experimental examples

Experiments were carried out on a steel beam with the length of 1.6m having a rectangular cross-section
with nominal dimensions of 2 cm breadth by 1 cm depth in free–free and free–clamped (cantilever)
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configurations. The beam was described by using 17 coordinates at equal spacings of 0.1m along the beam.
Antiresonances were assigned by added masses having magnitudes determined from Vincent’s circles.

4.1. Free-free beam

In this experiment a minimum was assigned to receptance h13,13 at 500 rad/s at coordinate 13, located 1.2m
from coordinate 1 at one end of the beam. A sixth-order polynomial was fitted to the measured receptances
over a range from 350–600 rad/s, which resulted in the following measurements at 500 rad/s.

h13;13 ¼ �4:3591� 10�6 � i� 2:3622� 10�7;

h1;13 ¼ �9:4057� 10�6 � i� 2:7544� 10�7;

h13;1 ¼ �9:6292� 10�6 � i� 4:1856� 10�7;

h1;1 ¼ �1:7089e� 10�5 � i� 1:5972� 10�7:

Application of Vincent’s circle resulted in a mass modification of 1.09 kg at coordinate 1. The complete circle
is shown in Fig. 13(a), where it is seen that the range of positive mass modifications (given by the full line)
is very small and the negative solutions extend to almost the entire circumference. The close-up view, in
Fig. 13(b), shows that there is indeed a positive mass solution. Fig. 14 shows the original receptance h13,13 (full
line) and the same receptance after physical application of the mass modification (dashed line). It can be seen
Fig. 13. Vincent’s circle for the first free–free experiment: (a) complete circle and (b) zoom plot showing the point of minimum receptance.

Fig. 14. Measured receptances h13,13 from the free–free beam: full line: before modification and dashed line: after modification.
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that the zero around 590 rad/s in the original system is relocated to a point very close to 500 rad/s by the added
mass.

In a second experiment using the free–free configuration a zero of h17,13 was assigned to 450 rad/s by means
of a mass modification of 0.165 kg at coordinate 1. The following measurements were obtained from smoothed
data at 450 rad/s:

h13;13 ¼ 3:9999� 10�6 � i� 6:9564� 10�7;

h1;13 ¼ 1:7699� 10�5 � i� 1:0382� 10�6;

h13;1 ¼ �1:3356� 10�5 � i� 2:7977� 10�7;

h1;1 ¼ �2:8561� 10�5 � i� 1:3138� 10�6:

The Vincent circle is shown in Fig. 15, and Fig. 16 shows the original (full line) and modified (dashed line)
receptance h17,13. It can be seen that the zero around 500 rad/s in the original system is relocated to a point
very close to the target frequency of 450 rad/s in the modified system.
Fig. 15. Vincent circle for the second free–free experiment.

Fig. 16. Measured receptances h17,13 from the free–free beam: full line: before modification and dashed line: after modification.
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Fig. 17. Vincent’s circle for the clamped–free experiment.

Fig. 18. Measured receptances h13,13 from the clamped–free beam: full line: before modification and dashed line: after modification.
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4.2. Clamped– free beam

A zero of h13,13 was assigned to 500 rad/s by means of a mass modification of 0.62 kg at coordinate 9 (at
midspan). The following smoothed measurements were obtained at 500 rad/s:

h9;9 ¼ �3:9948� 10�6 � i� 2:2412� 10�7;

h9;13 ¼ �5:2125� 10�6 � i� 1:1579� 10�7;

h13;9 ¼ �5:2463� 10�6 � i� 1:2293� 10�7;

h13;13 ¼ �3:6081� 10�7 þ i� 1:8944� 10�7:

The Vincent circle is shown in Fig. 17 where it can be seen the arc of positive mass modification is much
greater than in the previous two examples. Fig. 18 shows the original (solid line) and modified (dashed line)
receptance h13,13 and similarly to the previous examples it can be seen that the zero around 580 rad/s in the
original system is relocated to a point very close to 500 rad/s for the modified system.
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5. Conclusions

The Vincent circle is generalized to include the case of a straight line modification c ¼ aðk � o2mÞ þ b and is
shown to be a special case of the bilinear transformation due to Moebius. A new method is presented for the
visualization of Vincent circle results, especially when more than one modification is considered. The method
is demonstrated in simulations and physical experiments. In the former, damping and general straight-line
modifications are considered. In the latter, the zeros of point and cross receptances are assigned by adding
point masses to a beam.
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Appendix A. Derivation of the Vincent circle for the general straight-line modification z ¼ kþ ixc� x2m, where

c ¼ aðk� x2mÞ þ b

It is required to find the nature of the complex equation (8) for the general modification z ¼ k þ ioc� o2m,
where c ¼ aðk � o2mÞ þ b.

Let a ¼ pþ iq, b ¼ rþ is, c ¼ tþ iu and d ¼ vþ iw.
Substituting z ¼ ðk � o2mÞ ð1þ iaoÞ þ ibo in Eq. (8) yields

pþ iq ¼ rþ isþ
ðk � o2mÞ þ iaoðk � o2mÞ
� �

þ ibo
	 


ðtþ iuÞ

1þ ðk � o2mÞ þ iaoðk � o2mÞð Þ þ ibo½ �ðvþ iwÞ
. (A.1)

Simplifying Eq. (A.1)

ðp� rÞ þ iðq� sÞ

¼
t ðk � o2mÞ þ iaoðk � o2mÞ
� �

þ iu ðk � o2mÞ þ iaoðk � o2mÞ
� �

þ itbo� ubo
1þ v ðk � o2mÞ þ iaoðk � o2mÞð Þ þ iw ðk � o2mÞ þ iaoðk � o2mÞð Þ þ ivbo� wbo

. ðA:2Þ

Eq. (A.2) can be written as

½ðp� rÞ þ iðq� sÞ� 1þ v ðk � o2mÞ þ iaoðk � o2mÞ
� �

þ iw ðk � o2mÞ þ iaoðk � o2mÞ
� �

þ ivbo� wbo
	 


¼ t ðk � o2mÞ þ iaoðk � o2mÞ
� �

þ iu ðk � o2mÞ þ iaoðk � o2mÞ
� �

þ itbo� ubo
	 


. ðA:3Þ

The real part of Eq. (A.3) gives

ðp� rÞ � ðp� rÞwbo� ðq� sÞvboþ ubo½ �

¼ ðk � o2mÞ t� uaoþ ðq� sÞd þ ðq� sÞvaoþ ðp� rÞwao� ðp� rÞv½ � ðA:4Þ

and the imaginary part of Eq. (A.3) yields

ðq� sÞ þ ðp� rÞvbo� ðq� sÞwbo� tbo½ �

¼ ðk � o2mÞ uþ tao� ðp� rÞd þ ðp� rÞvaoþ ðq� sÞwao� ðq� sÞv½ �. ðA:5Þ

Dividing Eqs. (A.4) by (A.5) results in deleting the modification term ðk � o2mÞ,

ðp� rÞ � ðp� rÞwbo� ðq� sÞvboþ ubo
ðq� sÞ � ðq� sÞwboþ ðp� rÞvbo� tbo

¼
t� uaoþ ðq� sÞwþ ðq� sÞvaoþ ðp� rÞwao� ðp� rÞv

uþ tao� ðp� rÞwþ ðp� rÞvaoþ ðq� sÞwao� ðq� sÞv
. ðA:6Þ
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Vincent’s circle is derived by rearranging Eq. (A.6)

ðp� rÞ2 þ ðq� sÞ2 þ
�u� taoþ 2boðuwþ tvÞ

wþ vao� boðv2 þ w2Þ
ðp� rÞ þ

t� uaoþ 2boðuv� twÞ

wþ vao� boðv2 þ w2Þ
ðq� sÞ

¼
boðt2 þ u2Þ

wþ vao� boðv2 þ w2Þ
. ðA:7Þ

To define the centre and radius of the circle, Eq. (A.7) is written in the form of the standard circle equation

p� rþ
uþ tao� 2boðuwþ tvÞ

2ðwþ vao� boðv2 þ w2ÞÞ

� �� �2
þ q� sþ

�tþ uao� 2boðuw� twÞ

2ðwþ vao� boðv2 þ w2ÞÞ

� �� �2

¼
4boðt2 þ u2Þ wþ vao� boðv2 þ w2Þ

	 

þ uþ tao� 2boðuwþ tvÞ½ �

2
þ �tþ uao� 2boðuv� twÞ½ �

2

4ðwþ vao� boðv2 þ w2ÞÞ
2

. ðA:8Þ

Let

A ¼ wþ vao� boðv2 þ w2Þ (A.9)

and write

t2 þ u2 ¼ cc�; v2 þ w2 ¼ dd�. (A.10)

Then the radius of the circle is given from the left-hand side of Eq. (A.8). After expanding the two squared
terms in the numerator and simplifying it is found that,

r2 ¼
bocc�

A
þ

cc�ð1þ a2o2 � 4abo2w� 4bovþ 4bo2dd�Þ

4A2
(A.11)

or after further simplification

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bocc�

A
þ BB�

r
, (A.12)

where

B ¼
o ða� 2bd�Þ � ið Þc

2A
and B� ¼

o ða� 2bd�Þ þ ið Þc�

2A
. (A.13)

The centre of the circle can be expressed as

x ¼ bþ B. (A.14)
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